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ABSTRACT

This report describes the radio-frequency current distributions in

a Brillouin-focused electron beam that has been velocity-modulated by a

gridless-gap cavity. The report gives a review of the small-signal theory

of ideal Brillouin beams in addition to small- and large-signal experimental

results. An approximation is made to predict the r-f current contours in

a Brillouin beam whose d-c current-density profile resembles a trapezoid.

The predictions of this theory are found to agree well with actual beam be-

havior in that both the thickness and the amplitude of the r-f current den-

sity ring around the beam vary with the depth of modulation Q when a is

very small. For values of a above 0.1, the amplitude of the current-

density ring becomes constant while the thickness of the ring continues to

vary.

The large-signal results show that an average nonlinear force is

present, which causes the average diameter of the modulated beam to be

smaller at some axial positions than the diameter of the d-c Brillouin beam.

In addition, the large-signal results show that at least two second- and

two third-harmonic waves are present on the beam. One of these in each

case is the component arising from the square-wave current-density wave

at the edges of the beam. The other wave in each case is thought to have

arisen from the nonlinear drive in the high alternating fields in the cavity

gap. Plasma-frequency reduction factors for these nonlinearly launched

harmonic waves are found to agree extremely well with those computed

from the small-signal theory.
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I. INTRODUCTION

The work accomplished to date on the beam analyser program at

Cornell has dealt mainly with the characteristics of d-c Brillouin beams,

and with the velocity distribution in the velocity-modulated Brillouin beam.3

This work is very briefly reviewed in the Appendix. The purposes of this

report are (1) to review the small-signal theory of the velocity modulation

of ideal Brillouin beams, (2) to modify this theory for application to actual

beams and compare its predictions with the small-signaal r-f current contours

found in the velocity-modulated beam described, and (3) to describe ,,ialita-

tively the large-signal data obtained for fundamental and harmonic currents

using the equipment described in the Appendix.

j- -1-~ +._ • . . ... _ -



II. BRILLOUIN BEAM WITH SMALL-SIGNAL MODULATION

A. THEORY FOR IDEAL BRILLOUIN BEAM

In this section a general review is given of the small-signal theory

of r-f disturbances on nonscalloping d-c Brillouin beams. Shown in

Figure 1 is a sketch of the system to be analyzed. The review is divided

into two main parts: The first is a description, originally presented by

Rigrod and Lewis, 4 of the waves on a Brillouin beam; the second part deals

with the modulation of a Brillouin beam by a gridless -gap cavity.

1. Wave Propagation on Brillouin Beams

For an electron beam with no angular variation in charge density,

fields, etc., the Lorentz force equation is

Y - r62 = -)(Er + BzrA) (1)

7Bt(r z r , (2)r dt

" E -Ez ,(3)

where r, 0, and z are the co-ordinates of an electron in the beam. The

d-c solutions to these equations, which are valid for nonscalloping Bril-

Iouin flow can be found in many references 56,7 and are

nB B

0L 2

- r ,2  E 0 Po -- • (4)~r r•L E02
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Figure 1. Diagram of Brillouin Beam and Modulating Cavity.

The important things to remember about the nonscalloping Brillouin beam are:

(1) that the axial velocity is constant throughout the beam even though effects

of depression in potential are accounted for, and (2) that in practice, beams

closely approximating Brillouin beams can be formed.1 ' 2 It is expected,

therefore, that measurements made on the nearly ideal beam should agree

well with predictions of the behavior of a Brillouin beam.

If the initial positions of an electron in the Brillouin beam are de-

signated as ro, 0o, and zo, then at time t, the co-ordinate of the elec-

tron will be r, 00 + WLt, and z° + u t. When the Brillouin beam iso ~Lto
velocity modulated at small-signal levels, these co-ordinates and the axial

and radial electric fields are perturbed. For nonrelativistic velocities,

effects that are due to a-c magnetic fields are small and may be neglected.

-3-



Since it is assumed that no flux is present in the cathode region, Equation

(2) may be integrated to show that 6 = wL, even when r-f disturbances

are present. Equation (1) may therefore be written as

r+ rw2 = -¶Er (5)

If it is assumed that the perturbed co-ordinates and fields are written as

r + rI and Er0 + Erl, where the subscript o identifies a d-c quantity

and the subscript 1 identifies a r-f quantity; then Equation (5) may be

written as

rl o + (r° + l)rwL = "'I(Er +E) , (6)

and Equation (3) as

z -- E (7)

It must be remembered that if the radial position of an electron in the beam

varies, then the electron experiences a d-c electric field of magnitude,

-TIE =W (r + r (8)

Equation (8) is not valid for those electrons moving outside the outer dia-

meter of the d-c Brillouin beam. This is because, as is shown in Figure 2,

the radial electric field outside the beam is inversely proportional to radial

position rather than directly proportional to it, as is the case inside the beam.

If it is assumed that this error is small for small values of r 1 , then Equa-

tion (6) becomes

"r =-"nrE r (9)

-4-
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Figure 2. Radial Electric Field as Function of Radial Position for D-C

Brillouin Beam (rb = Outer Radius of D-C Brillouin Beam).

If it is assumed that all r-f quantities are small and that they vary

as ej(CWt - Yz) then

dd-• = JUo(pe- Y) ,
dt 0 e'

where e so thate u
0

r, =j U )Er (10)
o e

and

= U o(Ee (11)

The continuity equation may be written as

.(P ) = - -
at

- -5-



or as
8

Pl 8 d
- _t 8 dtra P-(1Z

-1I at U 0  PI I()

so that

P1 I J v u ,(13)
uo(Pe - y) -

where

U= + z

Combining Equations (10), (11), and (13) gives the following equation for

the r-f charge density:

-2oYn E 1  Pi (14)
.1 0~ (Pe - Y - e Y)2

since

2
2  1 P O
p= u2  U2

0; 00

Equation (14) has two solutions:

22
p= (•eY) ( 15)

and

P1 = 0 (16)

Equation (15) leads to -y = e P P, which is the result found for infinite

planar flow. This result cannot be accepted, since it is expected that the

over-all behavior of a Brillouin beam should not differ appreciably from

-6-



the behavior of the beam with confined flow. That is, it is expected that

= p - FP , where F is the plasma-frequency reduction factor; and that
e p

F 1 Fc, where Fc is the reduction factor for a beam with confined flow.

Equation (16) states that the charge density within the modulated beam is po0

This means, of course, that the r-f convection current must result mainly

from changes in the beam radius, as is shown in Figure 3.

With the preceding information about the motion of electrons in the

Brillouin beam, it is possible next to set up and solve the wave equations for

the electric and magnetic fields in the beam. The reason for doing this is,

of course, to determine the reduction factor F for the plasma oscillations

in the beam. To facilitate the solving of the wave equations and to make the

matching of boundary conditions simpler, it is convenient to make an approxi-

mation at the edge of the beam. This approximation in effect simply re-

.• ;~HARGE DENSITYa =po
/ ~INSIDE BEAM •

Figure 3. Diagram Showing R-F Modulation on Brillouin Beam. (Radius

Svaries as ej (Wt 'z) where it is expected that y = pe F P
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places the rippling edge of the beam by the equivalent surface-current

density,

G = po r(ro) u 0 (17)

where r (r ) is the value of the variable component of the radius evalu-

ated at the d-c Brillouin beam radius. With this approximation, the beam

may be considered to be a smooth cylinder surrounded by a shell of surface

current.

From Maxwell's equations, now, the equations for the transverse-

magnetic fields in the beam are found to be

I a r Ozi\ 2 k2 )E(8--"r Y kE ,1  = j'L 118

DE
L -Z I ý_j(9"ýZ Er I y 8r Y2 • rl ,19

and

H =2j + o Er , (20)
0 r 1  Y~ r1

2 2

where k = W Le . Since a nonrelativistic beam is being considered,

k /y7 << I . In addition J. = Poz0,and Jr = Por 1 , so from Equations (10)

and (11), it is seen that

1 = e" E 5 l (21)

and

6 r j E r 1  (22)
e

rI-8-



By substituting Equations (21) and (22) into Equations (18), (19), and (20)

and by neglecting relativistic terms, one can obtain the following'equa-

tions for the transverse-magnetic fields inside the beam:

('r BE. "y2 E- l = 0 , (23)

OE

E = =(24)rI y Br

He (-oe E (25)

Equation (23) (which is the same as the equation for the 5-component of the

electric field in a charge-free region), is as expected, since it was shown

earlier that p1 = 0. The solution to Equation (23) inside the beam must be

E = AI (yr), since the electric field must be finite at R = 0. In the regionz 0
outside the beam, where Equation (23) applies,

E = BI 0(yr) + C Ko(yr) (26)zIout0

The magnetic field inside the beam can be found from Equations (24) and

(25) and is

H = L (P A1I(yr) (27)8e Y e (Pe"-_Y

The magnetic field outside the beam is



He Ilout [B [I1I(yr) - CK,(yr)] . (28)

In order to determine the constants A, B, and C, it is necessary to con-

sider the boundary conditions at the drift-tube wall and at the edge of the

beam. At the wall, where r = rc , the s-directed electric field is zero, so

B = -C 0 C (29)
I (yr )

At the edge of the beam, the z-directed electric fields inside and outside

of the beam must be equal, therefore

AI0(yrb) = B [Io(-yrb) + C Ko(,yr )] (30)

In addition, the magnetic field inside the beam plus the surface-current

density at the edge of the beam must be equal to the magnetic field outside

the beam. The surface-current density was G.= por (rb )u 0or with the

aid of Equations (10) and (24),

2

e AIl(Myrb)

Thus at the boundary where H Gz = H0
G lout

b) o o 03t~ AllYr b)t - (e. - ¥ AI((Prb) " j Y (Pe A y)2

= Je f 0°U0 B [Il(yrb) - CK l (-yrb) (32)

-10-



Now, by eliminating the constants A, B, and C, one obtains the following

equation:

I (yr)I (yr)
- -B) I0(rb) Il(yrb) + K(-yrb) c

lo(yrb) - Ko(yrb) Ko(yrc)

where FE = (e Y) 12/P is the reduction factor to be determined. By

using the Wronskian relation,

1o(yrb) Kl(yrb) + Il(yrb) Ko(yrb) =
(yrb)

one can rewrite

2  FK0 I(Yrb) KO(yrc)(
FB = yrbII(yrb) o(rb) - 0 0(yrC) (34)

Shown in Figure 4 are the plots of the plasma-frequency reduction factor

FB as a function of yrb for various ratios of the diameter of the drift

tube to the beam diameter. It is interesting that the reduction factors are

smaller than for confined-flow beams, and that the asymptotic value for F

at large values of yrb is I/'42 instead of unity, which is the value for the

confined-flow beam. The reason for the low values of F is apparent when

the fields at the edge of the beam are examined. As is shown in Figure 5,

the axial r-f fields in the Brillouin beam are weakened by bulging both into

and out of the beam. In the confined-flow beam, the axial fields near the

edge of the beam are weakened by bulging outward, whereas the fields near

the axis are only slightly weakened. Thus the net axial field causing plasma

-11-
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Figure 4. Plasma -Frequency Reduction Factors for Nonscalloping Brillouin
Beams.

(a)

Figure 5. Diagram Showing Bulging of Electric Field Lines in (a) Brillouin

Beam and (b) Confined Beam.



oscillations in the Brillouin beam is weaker than the one causing these

oscillations in the confined beam, so that the reduction factor for the Bril-

louin beam is smaller than for the confined beam.

2. Velocity Modulation of Brillouin Beams

This part deals with the modulation of a Brillouin beam by a grid-

less -gap cavity ard closely follows the work of Chodorow and Zitelli.8 A

sketch of a typical gridless -gap cavity and its orientation with respect to

the beam is shown in Figure 1. Before computing the actual velocity modu-

lation produced by the fields in the gap, we show that modulation by a grid-

less-gap cavity does launch the waves with zero r-f charge density, which

were described in Section Al.

In the gap region, Equations (7) and (9) may be rewritten as

;j= -"n(E +r E (35)= Ecr)

and

Z, = -.u(Ez +Ec ) c (36)

where E is the radial and Ec the axial component of the electric field
Cr 39

produced by the cavity. Since Equations (35) and (36) are two components

of a vector equation, and since under small-signal conditions, the operators

d/dt and V • are interchangeable, one obtains

d u"
S = V (E + E = P (37)

But from Equation (12),

d
Po _• - Pi ( (38)

i13j -13-



therefore by combining Equations (37) and (38), one obtaien

d2  2 (9d P1 + 2p P, a 0 .(39)

Equation (39) states that a small volume of charge moving through the gap

region must either vary in density as e or must not vary at all. Again,
.lWpS

e variations must be rejected for the same reason that Equation (15)

was rejected, and it in assumed that pl = 0.

If the gap dimensions are small compared to the free-space wave-

length, the r-f electric fields in the gap region may be approximated by

Ec = j jt 1 1 (hr A(h) e-jhs dh , (40)
r o'-'tc'hr

-00

and

Ecz = f 1(hr A(h) jhz dh , (41)

-00

where h is a dumny variable bf integration, and A(h) is a function to be

determined by the boundary conditions at the drift-tube walls. A reasonable

approximation to the field configuration at the drift-tube wall is that it is

nearly the same as that between two knife edges; therefore

V (2

A(h) = V Jo (hd/2) (42)

where V is the peak value of the gap voltage, and d is the distance between

the gap edges.

-14-



The equation for the beam velocity in the gap,

"-d I "-nlEl + Ec '

can be written as

8 =,-•.E (43)•z 1 1 + 0~ Ec

where the effects of the electric fields originating from electron motions

E1 is approximated by changing jPe to jy; therefore

00 00

S jWto jYz A(h)oIl(hr) e•jhz dh dz
r, = dJ 1 I 0 jf z 1 0(hrb) }

= ju L [o 1) 1 (yr) e (44)
0 2

and

jr Alh) Iolhr) -h

= -e j ejYZ e jh dh} dz
Uo I (hr2

-00 -00

0 2j d io((•rc)] Jt

where, as usual, a is the depth of modulation and is equal to V/V . The

time to is the time at which the electrons pass the position a a 0 at the

center of the gap. Now the velocities given by Equations (41) and (42), and

the zero r.f charge density and zero radial displacement at z a 0 are the

S~-15-



initial conditions for, the waves described in Section Al. From Equati6ns

(10) and (11), and from the known variations of the electric fields with ra-

dius, it is seen that the magnitude of the radial and axial velocities after

modulation can be written as

r1 = - -flA---- ( r)
I u 1 A 11(yr

0 e

and

z*11 AIo(yr)
1 u (P T1y) 0 N

00e

or as

= r "jPqz "PqZl j(wt- Pes)
;1 j I + V2  ] I1 (1y') a (46)

and

; = 1 •q + V 2 (Pqzj 10 (yr) a , (47)

since both fI and 1I vary as ej(wt -Yz) where V A l Ap P e . Pq

.At z = 0, Equations (46) and (47) can be equated to Equations (44) and (45),

so that

d

V + = u - Q 0 (48)z 0'2 1 o(Yrc)

Not only must the velocities in the drift tube and the gap be equal at z = 0,

but the displacement of the electrons from their d-c positions must also

be equal. In the drift tube, the radial displacement is

-16-



qq~ q " Il J(wt • az (49)

If it in assumed that no radial displacement of the electrons taktes place in

the gap, then at za= 0, one obtains rI = 0, and so PI= Y2. Finally, then,

the equations for the electron velocities and for the r-f component of the

beam radius become

u d Io(yr) j(Wt - pea)

j y 1) - coaPqe , (50)

and

(d) II(Yrb) j•t - pea)r j _L sL (Y-) sin P • (52)

Pq 2 0 Io(yr) o q

Equations (50), (51), and (52), and the condition that p, = 0 show that

there are two components of r-f current density in the axial direction.

The first, a volumetric current density, is simply the product Pot, . The

second is a surface-current density that results from the rippling of the beam

edge. If a Fourier analysis is made of the current density at rb, which

is the radius of the d-c beam, it is evident that odd harmonics of current

density are present, as well as the fundamental component, since the cur-

rent density is a square wave. In fact, a complete expression for the

surface current density is

-17-



io00 Z J
33 = Jo I •" sin'l + An n s

niodd

2 0 sign @in'16) coo ' no , (53)

naeven

in which -1 < 6 < 1 is a measure of the radial position r6, at which

is is to be evaluated and can be determined from

rA6 r b + SA @in Pq z (54)

where

A - L J (4d) (55)
p q 2 0 2 i1Yr)

Now, from Equation (53) and from Poil , the various components of the

current in the modulated beam can be determined to be as shown in Figures

6 and 7. The curves in Figure 6 show the average, fundamental, 2nd-har-

monic, and 3rd-harmonic current distributions as a function of the radial

position in the beam for two drive levels. It is important to remember that

the integral across the beam of any harmonic-current component vanishes.

For the second harmonic component, for example, the current peak inside

rb is 180" out of phase with the current peak outside rb, so that the net

second-harmonic current is zero. Thus, only the fundamental current com-

ponent can induce currents in an external circuit. The curves in Figure 7

show the average and fundamental currents as functions of the horisontal

-18-
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Figure 6. Components of Current in Brillouin Beam,
Velocity-modulated at Small-Signal Levels.
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Figure 7. Average and Fundamental Currents as
Functions of Horizontal and Axial Positions.
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and axial positions in the beam. The zero position in where the modulating

cavity is assumed to be. Note that exaggerated curves in the volumetric

current are included in the plot of fundamental current. Note also that the

volumetric current goes to zero at horizontal positions that are '-q/4 from

the zeros of the surface current.

The magnitude of the volumetric current in the beam is simply the

integral of poil across the beam and is therefore
rb

I f = f P 1 2wrdr

0

or

= rbIJ 0 a d Y coso z eJMot -ea) (56)I,, z 0 1q(lrc (5q6

The surface current is Zv rbpoUor1 ; therefore

2rJ o - - (Y d)z ll-b sin *ftz eJ(t'e) (57)

P 2q 0 0 o(yr)•re

The ratio of the maximum value of I to the maximum value of I is

therefore seen to be q/y; therefore the volumetric current can normally

be neglected.

B. EXPERIMENTAL RESULTS WITH NONIDEAL BEAM

This section consists of two parts. The first presents modification

of the ideal beam theory, which takes into account the fact that the curve

of charge density as a function of radius in actual beams is more nearly

S.- 2 1 -



trapezoidal than rectangular in shape, as shown in Figure 8. (This die-

tortion of the ideal beam is due mainly to the thermal velocities of the elec-

trons.) The second part of this section presents a comparison of the pre-

dictions of the first part with data taken on a nearly ideal Brillouin beam.

A very brief description of this beam and of the equipment used to obtain

it is given in the Appendix. More complete descriptions are included in

1.3 Zreports by Gilmour and Hallock

1. Approximations to Trapezoidal Beam

Since the part of the d-c trapezoidal beam where the charge density

is constant behaves like a Brillouin beam, it can be assumed that there is

no r-f space-charge density. This means, of course, that when the beam

tends to bunch in the axial direction, an expansion in the radial direction

occurs, which is sufficient to prevent bunching. Under small-signal con-

ditions, if the distance in which the charge density drops from p0  to zero

is small compared to the radius rb , it may be assumed that the radial

excursion of all parts of the sloping beam edge is the value of rl(b) given

in Equation (52) for the beam with vertical edges. Therefore, as is shown

in Figure 9, when the depth of modulation a is very small, the r-f current

density waveform at r(b) is a sinusoid. For the beam with vertical edges,

it was shown that this waveform is a square wave. As a is increased, the

excursions of the beam edge become large enough to cause the peaks of the

sine wave to become clipped. Finally for a reasonably large a , the current

density waveform closely approximates a square *ave,.

Shown in Figure 10 are curves of the fundamental current density as

a function of radius for various drive levels. Notice that for small drive



I

J L JV/
(a) (b)

Figure 8. Charge Density as a Function of Radial Position for (a) Ideal
Beam, (b) Practical Beam.

Figure 9. R-F Current Density Waveform at r(b) as a Function of (wt - -yz)
for'Various Drive Levels.
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Figure 10. Curves of Fundamental Current Density as a Function of Radius

for Various Drive Levels.
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levels, both the amplitude and the width of the current profile changel

whereas at large signal levels, the amplitude is nearly constant, but the

width of the profile changes. For the beam with vertical edges, it should

be remembered that the amplitude nf the current-density profile is always

2 J J and that only the width of the profile changes with a. Approximate
0 0

curves of the average and fundamental current densities as functions of

the horizontal and axial positions in the beam for a reasonably large value

of a (still within the small-signal range) are shown in Figure 11.

No mention has been made yet of the harmonic current densities

generated by small-signal modulation of the trapezoidal beam. It was

shown in Figure 9 that at the radial position r(b), no harmonic signals are

generated as long as the a is small enough to prevent clipping of the sin-

usoid. Harmonics are still generated at radii greater and smaller than

r(b), where clipping of the sinusoid does take place, but, these are much

smaller than those generated in the case of the beam with vertical edges.

How much the harmonic amplitude in the trapezoidal beam decreases de-

pends, of course, upon the slope of the edge of the beam.

2. Comparison of Experimental Results with Approximations to Trapezoidal

Beam

Shown in Figure 12 are plots of the average and fundamental cur-

rents taken at a small-signal level with the apparatus described in the

Appendix and elsewhere1 ' 2, 3 The current data are plotted as a function

of the horizontal position for various axial positions along the beam. Notice

that the average current profiles indicate that this beam closely approximates

the trapezoidal beam described in the previous section. The drive level in

Figure 12 is low enough so that the difference between the average current

-24-
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Figure 11. Approximate Current Densities as Functions
of Horirontal and Axial Positions in
Trapezoidal Beam.

- 425-



HORIZONTAL POSITION IN 09AM (INCHES)
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Figure 12. Average and Fundamental Current-Density Plote as Functions
of Horizontal and Axial Positions in Beam for an a of .041.



profiles and the profiles of the d-c Brillouin beam are not apparent. Ex-

cept for irregularities caused for higher-order effects at the edge of the

d-c beam, the fundamental current pattern is very much like that shown in

Figure 11. Notice that both the width and the amplitude of the current

peaks vary with distance. This same effect has been reported by Winslow. 9

Unfortunately, no calibration of the r-f current probe was possible, so

that the amplitudes of the fundamental current curves must not be compared

with the amplitudes of the average current curves in Figure 12 or in suc-

ceeding figures in this report.

Shown in Figure 13 are plots of the peak velocity of the beam as a

function of axial position for the a of . 041 of Figure 12 as well as for

several other values of L. For the two lowest values of a, these curves

are seen to be nearly as predicted by theory. The main deviations have

been pointed out in the literature3 and are: (1) that the nulls do not reach

the d-c beam level, and (Z) that the maxima decrease slightly with dis-

tance. A possible explanation of this behavior is given in an earlier paper.3

It should be mentioned here that the experimental value of the plasma-fre-

quency reduction factor determined on the basis of data given in Figures

12 and 13, as well as in an earlier study, is 0.42. This agrees extremely

well with the value of 0.413 obtained from Equation (34) in Figure 4.

Shown in Figure 14 are plots of the average and fundamental cur-

rents; these, however, are for a = .083. Notice that both the amplitude:

and the widths of the fundamental current peaks are greater than those

given in Figure 12. No harmonic data are available at the drive levels of

Figure 12 and 14 because the harmonic currents were found to be partially

or totally masked by the noise of the receiver system used for current meas-

urements..

-27-



z

z

t a

IL 0

494

400

49

.w0

00

00

(910A -1*1AV~



HORIZONTAL POSITION IN BEAM (INCHES')

2.0- 2.0

4.0- 4.0

-. 0 -0-

---------- I- -~

1 0.0 - 0.0 - -----

"LO,

-29



IM.. BRILLOUIN BEAM WITH LARGE-SIONAL MODULATION

Although considerable effort has been devoted to the large-signal

analysis of Brillouin beams, a satisfactory theory has not yet been formu-

lated; therefore, this section contains experimental results of large-signal

B~rillouin beam and a qualitative rather than quantitative discussion of the

results.

Shown in Figures 15 and 16 are curves of the average and fundamental

currents for values of a of 0.14 and 0.20. The a a 0.14 curves show that

the amplitudes and widths of the fundamental current peaks have increased

when a was increased. The curves of a = 0.20, however, show a further

increase in the width of the current peaks, but, little or no increase in the

amplitude of peaks. Thus the development shown in Figure 10 for large

values of a has been reached.

Spreading of the average current profiles where maxima in the

fundamental current profiles occur is evident in Figures 15 and 16. These

average current profiles are similar to those predicted in Figure 11. The

main differences are due to the d-c beam profile not being quite trapesoidal

but having rourided corners instead. This means, of course, that the aver-

age current profiles should not have the sharp corners shown in Figure 11.

One important nonlinear effect that is most easily noticeable in Figure 16 is

the narrowing of the average current profiles to diameters smaller than the

d-c Brillouin berm diameter. Because of the enlarged radial motions near

the surface, an average nonlinear force arises, which is directed radially

inward. This causes a sharp beam focus one-quarter of a reduced plasma

wavelength from the fundamental current maxima. For drives as large and
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Figure 16. Average and Fundamental Current-Density Plots as Functions
of Horizontal and Axial Positions in Beam for an a of 0.20.
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larger than the one used in Figure 16, the average crrent density at the

beam center is altered, and severe alteration of beam spreading and beam

focusing are noticeable with distance. This is especially evident in Fig-

ure 16 after the second null in the surface current.

It may be noticed that a small amount of volumetric fundamental

current density has arisen in Figures 15 and 16, especially at larger drift

distances. A portion of this current density is clearly the po0 compon-

ent, which is predicted by the small-signal Brillouin beam theory. A sec-

ond portion of this current density arises from nonlinear effects and is re-

latively irregular and never large when reasonable wave-like behavior is

observed.

Second-harmonic current-density profiles for drive levels of a = .14

and a = .20 are shown in Figure 17. These are considerably lower in

amplitude than the fundamental current densities for the same drive levels

and remain mainly as surface currents. Since no calibration of the circuit

for the second-harmonic current was possible when the second harmonic

data was taken, no comparison of absolute amplitudes of fundamental and

second-harmonic currents is possible. There appear to be at least two

current waves present in the data shown in Figure 17. The first is the com-

ponent arising from the square-wave current-dentisy wave at the edges of

the beam. This component was predicted in Section II. A second compon-

ent is present, which is thought to have arisen from a wave at the second-

harmonic frequency launched at the cavity by the nonlinear drive in the high

alternating fields in the gap. This wave has its own standing-wave period

along the beam, which is considerably less than that for the fundamental

frequency because of a larger plasma-frequency reduction factor at the
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second-harmonic frequency. The ratio of the second-harmonic to the funda-

mental frequency-reduction factor determined from Figu•res 17 and 13 is

approximately 1.27 and that obtained from Figure 4 is 1.33, which supports

the idea that a second-harmonic signal is launched by the cavity.

It can be seen that when this short-period component with a single

maximum in radius goes to zero, the long-period component with its double

maximum in radius remains. Note also that the longitudinally spaced zeros

of the second-harmonic current density are less regular than those of the

fundamental current density. This is due to the two waves with different

reduced plasma wavelengths beating with each other with distance.

Third-harmonic current-density contours across the beam as a

function of drift distance for the drive level a = .14 are shown in Figure 18.

As in the second harmonic.case, the current is predominantly at the surface

and is quite small, no comparison of absolute amplitudes can be made, and

a component launched by the noniinear field in the gap is present but now

the magnitude of this component is not too much larger than the component

resulting from large alternating positions at the fundamental frequency. The

component caused by the nonlinear field has an even shorter period than

that of the second harmonic, because it is a third-harmonic wave, having a

still larger plasma-frequency reduction factor than the second-harmonic

wave. In this case, the experimental ratio of the reduction factor of the

third harmonic to fundamental frequency is about 1.53, and the predicted

ratio is 1.47, indicating very good agreement. The irregular longitudinal

spacings of the zeros is present as in the second harmonic, but is compli-

cated by a small, comparable body current density.
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IV. CONC LUSIONS AND RECOMMENDATIONS

In conclusion, it rnmy be said that the small-signal theory of the

Brillouin beam accurately describes the r-f forces in the beam because

(1) the r-f current-density profiles determined experimentally display

the shell of surface current predicted by the theory and (2) the measured

plasma-frequency reduction factor is nearly identical to the predicted value.

In addition, it appears that the modification made in the theory for beams

with trapezoidal cross sections is valid, since the shapes of the experi-

mental r-f current contours agree well with those predicted by theory.

From the discussion of the large -signal effect4a it is apparent that

the nonlinear forces arising in the beam are not well understood, and it is

recommended that continued efforts be devoted to the formulation of a satis -

factory nonlinear theory.
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APPENDIX: PROBE CIRCUITRY FOR MEASURING R-F CURRENT

The beam analyser used in obtaining the r-f current data presented

in this report is the one described by Gilmour1,3 and Hallock. The im-

portant features of this analyzer, and the r-f current-measuring probe and

circuitry, arwdescribed here.. The parts of the analyser essential to the

r-f current measurements are shown in Figure A-1. The electron beam,

on which measurements were made, was generated by the shielded Pierce

gun shown at the right side of the figure.. This gun was normally pulse

operated at 5000 volts and had a microperveance of 1.15. The area com-

pression of the beam was 50: I, and the magnetic field required for Bril-

louin flow (less than 2 per cent scalloping) was 285 gauss.

As is shown in Figure A-i, a ball valve was positioned between the

gun and the drift region which contained a doubly re-entrant cavity and a

beam-analyzing mechanism. This valve is considered to be oneof the

most important parts of the analyzer because when it is closed, the drift

tube can be opened to atmospheric pressure while the cathode remains in a

region evacuated to a pressure of about 10-9 mm Hg. When the drift tube

is evacuated, the valye is opened and the beam from the gun passes through

the aperature in the ball to the beam-modulating and beam-analyzing region.

A. PROBE

The beam-analyzing mechanism shown at the left of Figure A-i is

shown again in Figure A-Z and also in the photograph in Figure A-3. Most

of the electron beam was collected by the beam-collecting plate, which was

carbonized to reduce the secondary electron ratio. A small portion, however,
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was allowed to pass through the 0. 010-inch aperture in the center of the

plate to a Faraday cage. The Faraday cage, in turn, was attached to the

end of the center conductor of a nonresonant coaxial line, which proved to

be valuable in measuring currents at frequencies from d-c to 6000 Mc/s.

Since the distance between the Faraday cage and the beam-collecting plate

was about 0.030 inch, the electron transit angle between the plate and the

cage was less than 0.25 radians under normal operating conditions. The

gap-coupling coefficient for the current under these conditions was unity,

for all practical purposes, and that for velocity was zero. As is shown

in Figure A-2b, a short portion of the coaxial line directly behind the beam-

collecting plate was flexible, so that the plate could be moved with respect

to the fixed part of the coaxial line. The reason for moving the plate was,

of course, to make beam measurements at any point in a plane perpendicular

to the axis of the beam.

The electron current from the cage went out through a coaxial feed-

through in the bottom control rod to an indicating device outside the analyzer.

The collecting plate was positioned in the plane perpendicular to the axis of

the solenoid by rotations of the two control rods. As is shown in Figure A-Zb,

the plate could be moved horizontally by rotating the bottom rod. Vertical

motion was produced in a similar manner by rotating the side rod. Teflon

bearings, which were utied to prevent binding between stainless steel parts,

were attached to the back of the plat. and slid on the lever arms attached

to the side and bottom rods during horizontal and vertical motion. Although

rotational motions were converted to translational motiond in positioning

the cage, they could be considered to be linear, since the distances moved

were small compared to the length of the lever arms.
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The collecting plate and positioning rods are illustrated in Figure

A-3. The disk shown behind the collecting plate and the lever arms was

used to center the entire mechanism in the drift tube. Axial motion of the

cage assembly was produced by moving the control rods through Veeco

quick couplings.

Figure A-4 shows the control mechanism for the positioning rods.

The scanning mechanism was moved axially by using the gear and rack ar-

rangement shown in the figure. The angular position of the rods was ad-

justed by means of micrometers, the micrometer that set the horizontal

position of the Faraday cage being equipped with a motor drive. Reversing

switches caused the motor to sweep the cage back and forth across the beam

automatically. To provide a voltage proportioned to the horizontal position

of the cage, a ten-turn helipot was geared to the motor. This voltage was

applied to the X input of an X-Y recorder and a voltage proportional to

the r-f current component selected by the Faraday cage circuit was applied

to the Y input of the X-Y recorder so that automatic plotting of current

amplitudes as a function of position in the beam was possible.

B. CIRCUITRY

A block diagram of the circuit used for measuring the r-f currents

received by the Faraday cage is shown in Figure A-5. The modulated beam

was sampled by the beam-collecting plate with a .010-inch aperture in the

center. The current passing through the aperture was collected by the Fara-

day cage and was taken out of the analyzer through the nonresonant coaxial

line. At this point, a filter was used to select the harmonic to be analyzed.

After the filtering process, a path was provided for d-c current to return
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to ground, and in fact, a recorder was normally included in this circuit

when measurements were being made of the fundamental r-f current com-

ponent so that the shape of the average-current profile in the beam could

be obtained simultaneously. Following the d-c current connection, a

capacitor was inserted in the line to eliminate parallel d-c current paths,

and a variable impedance was inserted to optimize the r-f signal ampli-

tudes arriving at the crystal mixer.

A local oscillator is shown in the lower left-hand corner of Fig-

ure A-5 and was used to obtain a 30-Mc/s intermediate frequency from

the crystal mixer. A filter and an isolator were used in the local-oscillator

circuit to prevent interference from local-oscillator harmonics and to iso-

late the local oscillator from impedance changes occurring in the r-f

current-sensing circuit.

A General Radio Type 1216-A unit i-f amplifier was used to amplify

the 30 Mc/s intermediate frequency generated by the crystal mixer. Since

the output voltage from the i -f amplifier was not directly proportional to

the amplitude of the 30 Mc/s signal fed into the amplifier, a nonlinear cir-

cuit was devised, which compensated for the nonlinearities in the i -f ampli-

fier. The amplitude of the output pulse from. this linearizing circuit was

therefore proportional to the amplitude of the 30 Mc/s signal and also

proportional to the r-f current signal from the beam, since the crystal

mixer was operated in a linear range.

Finally, the puilse from the linearizing circuit was amplified and fed

into a circuit which generated a d-c voltage equal to the peak pulse voltage.

This d-c voltage, which was then proportional to the r-f current signal

from the beam, was amplified by a General Radio Type 1230-A d-c ampli-
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fier and was applied to the Y input of an X-Y recorder. The voltage

applied to the X input of the recorder was, as usual, proportional to the

X position of the Faraday cage in the electron beam. As a result, by

using the circuit shown in Figure A-5, the amplitude of the r-f current

density in the beam could be recorded directly as a function of position in

the beam.
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